Data Structures

Quicksort
Quicksort

• To sort the subarray A[p . . r]:
 – **Divide:**
 • Partition A[p . . r] into A[p . . q − 1] and A[q + 1 . . r] such that
 – Each element in A[q + 1 . . r] is ≥ A[q].
 – **Conquer:**
 • Sort the two subarrays by recursive calls to quicksort.
 – **Combine:**
 • No work is needed to combine the subarrays, because they are sorted in place.
QuickSort

\textbf{quickSort} (A, p, r)

\textbf{if} (p < r) \textbf{then}

\hspace{1cm} q = \textbf{partition} (A, p, r)

\hspace{1cm} \textbf{quickSort} (A, p, q - 1)

\hspace{1cm} \textbf{quickSort} (A, q + 1, r)

\textbullet \textbf{Initial call} is quickSort (A, 1, n).
Partition

- All entries in $A[j .. r-1]$ are not yet examined.
- All entries in $A[i+1 .. j-1]$ are $> pivot$.
- All entries in $A[p .. i]$ are $\leq pivot$.
Partition

\[i = p - 1 \]

\[j = p \]

\[\begin{array}{cccccccc}
2 & 8 & 6 & 3 & 5 & 1 & 7 & 4 \\
\end{array} \]
Partition

\[i = p \]

\[j = p + 1 \]
Partition

\[i = p \]

\[j = p + 2 \]
Partition

i = p

j = p + 3
Partition

\[i = p + 1 \]

\[j = p + 4 \]
Partition

\[i = p + 1 \]

\[j = p + 5 \]
Partition

\[i = p + 2 \]

\[j = p + 6 \]
Partition

\[i = p + 2 \]

\[j = p + 7 \]
Partition

\[i = p + 2 \]
partition (A, p, r)
 i = p − 1
 for (j = p to r − 1) do
 if (A[j] ≤ A[r]) then
 i = i + 1
 exchange A[i] with A[j]
 exchange A[i + 1] with A[r]
 return i + 1

• **Complexity**: $\Theta(n)$ to partition an n-element subarray
Performance

• The running time of quicksort depends on the partitioning of the subarrays:
 – If the subarrays are balanced, then quicksort can run as fast as mergesort.
 – If they are unbalanced, then quicksort can run as slowly as insertion sort.
Worst Case

• Occurs when the subarrays are completely unbalanced every time.
 – When quicksort takes a sorted array as input.
• Have 0 elements in one subarray and n – 1 elements in the other subarray.
• The time complexity recurrence is

\[
T(n) = T(n - 1) + T(0) + \Theta(n)
\]

\[
= T(n - 1) + \Theta(n)
\]

\[
= \Theta(n^2)
\]

• Same running time as insertion sort.
Best Case

- Occurs when the subarrays are completely balanced every time.
- Each subarray has \(\leq n/2 \) elements.
- The time complexity recurrence is

\[
T(n) = 2T(n/2) + \Theta(n)
\]

\[
= \Theta(n \log n)
\]
Balanced partitioning

• Imagine that partition always produces a 9-to-1 split.

• The time complexity recurrence is

\[
T(n) \leq T(9n/10) + T(n/10) + \Theta(n) \\
= O(n \lg n).
\]

– Any split of constant proportionality will yield a recursion tree of depth \(\Theta(\lg n)\).

– Here we get a tree with \(\log_{10} n\) full levels and \(\log_{10/9} n\) levels that are nonempty.
Balanced partitioning
Intuition for the average case

- **Average** running time is much closer to the **best** case than to the worst case.
- There will usually be a **mix** of good and bad splits throughout the recursion tree.
- When the number of bad splits is bound, it doesn’t affect the asymptotic running time.
Summary

• **Worst-case** running time: $O(n^2)$.
• **Expected** running time: $O(n \lg n)$.
• **Constants** hidden in $O(n \lg n)$ are small.
• Sorts **in place**.
Randomized Version

• Instead of assuming that all input permutations are equally likely, we use randomization.
 – Instead of using A[r] as the pivot, randomly pick an element from the subarray that is being sorted.

```plaintext
randomizedPartition (A, p, r )
i = random (p, r)
exchange A[r] with A[i]
return partition (A, p, r )

quicksort (A, p, r )
if (p < r) then
  q = randomizedPartition (A, p, r )
quicksort (A, p, q − 1)
quicksort (A, q + 1, r )
```
Average Case

- The **dominant cost** is partitioning.
 - Since partition removes the pivot-elements from future consideration, the total number of calls is $O(n)$.
- Let X be the **total number of comparisons** in all partitions.
- We compute a bound on X:
 - Rename the elements of A as z_1, z_2, \ldots, z_n, with z_i being the ith smallest element.
 - Define the set $Z_{ij} = \{z_i, z_{i+1}, \ldots, z_j\}$ to be the set of elements between z_i and z_j, inclusive.
 - Each pair of elements is compared at most once,
 - Because elements are compared only to the pivot element, and then the pivot element is never in any later call to partition.
 - Let $X_{ij} = I\{z_i$ is compared to $z_j\}$.

Average Case

• Since each pair is compared at most once, the total number of comparisons is:

\[X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \]

• Take expectations of both sides:

\[
E[X] = E \left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \right] \\
= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}] \\
= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr\{z_i \text{ is compared to } z_j\} \]
Average Case

• The **probability** that z_i is compared to z_j is the probability that either z_i or z_j is the first element chosen in Z_{ij}.
 - Since once a pivot x is chosen such that $z_i < x < z_j$, then z_i and z_j will never be compared at any later time.
• There are $j-i+1$ elements in Z_{ij}, and pivots are chosen randomly and independently.
• Thus, the probability that any particular one of them is the first one chosen is $1/(j-i+1)$.
• Therefore,

\[
\Pr\{z_i \text{ is compared to } z_j\} = \Pr\{z_i \text{ or } z_j \text{ is the first pivot chosen from } Z_{ij}\} \\
= \Pr\{z_i \text{ is the first pivot chosen from } Z_{ij}\} + \Pr\{z_j \text{ is the first pivot chosen from } Z_{ij}\} \\
= \frac{1}{j-i+1} + \frac{1}{j-i+1} \\
= \frac{2}{j-i+1}.
\]
Average Case

- Substituting into the equation for $E[X]$:

$$E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

$$= \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1} \quad (k = j-i)$$

$$< \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k} \quad (H_n = \sum_{k=1}^{n} \frac{1}{k})$$

$$= \sum_{i=1}^{n-1} O(\lg n) \quad (\lim_{n \to \infty} H_n - \ln(n) = \gamma)$$

$$= O(n \lg n).$$

- So the expected running time of quicksort, using randomizedPartition is $O(n \lg n)$.
Order Statistic

• The i-th order statistic of a set of n elements is the i-th smallest element
 – The minimum is the first order statistic (i = 1)
 – The maximum is the n-th order statistic (i = n)

• A median is the "halfway point" of the set
 – When n is odd, the median is unique, at i = (n + 1)/2.
 – When n is even, there are two medians, at i = n/2 (the lower median) and i = n/2 + 1 (the upper median)

• The selection problem:
 – Input: A set A of n (distinct) numbers and a number i, with 1 ≤ i ≤ n.
 – Output: The element x ∈ A that is larger than exactly i - 1 other elements of A.

• The selection problem can be solved in O(n lg n) time (sort and pick the ith element)

• We’ll see two algorithms
 – O(n) bound on the running time in the average case
 – O(n) running time in the worst case
Minimum and Maximum

- Minimum
- Maximum
- Simultaneous
- $O(n)$

```
minimum(A)
min \leftarrow A[1]
for i \leftarrow 2 to length[A] do
  if min > A[i] then
    min \leftarrow A[i]
return min
```
Selection in Expected Linear Time

```plaintext
RANDOMIZED-SELECT(A, p, r, i)
1 if p = r
2 then return A[p]
3 q ← RANDOMIZED-PARTITION(A, p, r)
4 k ← q - p + 1
5 if i = k    → the pivot value is the answer
6 then return A[q]
7 elseif i < k
8 then return RANDOMIZED-SELECT(A, p, q - 1, i)
9 else return RANDOMIZED-SELECT(A, q + 1, r, i - k)
```
Selection in Expected Linear Time

\[X_k = \{ \text{the subarray } A[p \ldots q] \text{ has exactly } k \text{ elements} \} \]

\[E[X_k] = \frac{1}{n} . \]

\[T(n) \leq \sum_{k=1}^{n} X_k \cdot (T(\max(k-1, n-k)) + O(n)) \]

\[= \sum_{k=1}^{n} (X_k \cdot T(\max(k-1, n-k)) + O(n)) . \]

We solve the recurrence by substitution

Assume that \(T(n) \leq cn \) and that \(T(n) = 1 \) for small \(n \)

\[E[T(n)] \leq \frac{2}{n} \sum_{k=[n/2]}^{n-1} ck + an \]

\[= \frac{2c}{n} \left(\sum_{k=1}^{n-1} k - \sum_{k=1}^{[n/2]-1} k \right) + an \]

\[= \frac{2c}{n} \left(\frac{(n-1)n}{2} - \frac{([n/2]-1)[n/2]}{2} \right) + an \]

\[\leq \frac{2c}{n} \left(\frac{(n-1)n}{2} - \frac{(n/2-2)(n/2-1)}{2} \right) + an \]

\[= \frac{2c}{n} \left(\frac{n^2 - n}{2} - \frac{n^2/4 - 3n/2 + 2}{2} \right) + an \]

\[= \frac{c}{n} \left(\frac{3n^2}{4} + \frac{n}{2} - 2 \right) + an \]

\[= c \left(\frac{3n^2}{4} + \frac{1}{2} - \frac{2}{n} \right) + an \]

\[\leq \frac{3cn}{4} + \frac{c}{2} + an \]

\[= cn - \left(\frac{cn}{4} - \frac{c}{2} - an \right) . \]

Which is at most \(cn \) for \(c > 4a \) and

\[n \geq \frac{c/2}{c/4 - a} = \frac{2c}{c - 4a} . \]
Selection in Worst-Case Linear Time

1. **if** \(n = 1 \) **then**

 Returns the only input value.

2. **Else**

 1. Divide the \(n \) elements of the input array into \(\lceil n/5 \rceil \) groups of 5 elements each and at most one group made up of the remaining \(n \) mod 5 elements.
 2. Find the median of each of the \(\lceil n/5 \rceil \) groups by first insertion sorting the elements of each group and then picking the median from the sorted list of group elements.
 3. Recursively find the median \(x \) of the \(\lceil n/5 \rceil \) medians found in step 2
 4. Partition the input array around the median-of-medians \(x \).
 5. Let \(k \) be the number such that \(x \) is the \(k \)-th smallest element.
 6. If \(i = k \)

 return \(x \)
 7. Else

 Recursively find the \(i \)-th smallest element on the low side if \(i < k \), or the (\(i - k \))th smallest element on the high side if \(i > k \).
Selection in worst-case linear time

After each partition we rid of at least $3\left\lfloor \frac{n}{5} \right\rfloor - 2 \geq \frac{3n}{10} - 6$ elements.

We solve the recurrence by substitution

Assume that $T(n) \leq cn$ and that $T(n) = 1$ for small n

Which is at most cn for $n \geq 140$ and $c \geq 20\alpha$